Lesson 15. More Economic Applications of Linear Systems

1 Overview

- In this lesson/worksheet, you will solve two types of economic models using the techniques for solving systems of linear equations we covered in Lessons 12 and 13.

2 Market models

- Consider the following two commodity market model:

$$
\begin{align*}
D_{1} & =S_{1} \tag{1}\\
D_{1} & =10-2 P_{1}+P_{2} \tag{2}\\
S_{1} & =-2+3 P_{1} \tag{3}
\end{align*}
$$

$$
\begin{align*}
D_{2} & =S_{2} \tag{4}\\
D_{2} & =15+P_{1}-P_{2} \tag{5}\\
S_{2} & =-1+2 P_{2} \tag{6}
\end{align*}
$$

where

$$
\begin{array}{lr}
D_{1}=\text { demand for product } 1 & D_{2}=\text { demand for product } 2 \\
S_{1}=\text { supply for product } 1 & S_{2}=\text { supply for product } 2 \\
P_{1}=\text { price for product } 1 & P_{2}=\text { price for product } 2
\end{array}
$$

- Look at equations (2) and (5). Explain why product 1 and product 2 are substitutes. (See Lesson 10 for a refresher.)

$$
\left.\begin{array}{l}
P_{2} \uparrow \Rightarrow D_{1} \uparrow \\
P_{1} \uparrow \Rightarrow D_{2} \uparrow
\end{array}\right\} \quad \begin{aligned}
& \text { Therefore, product } 1 \text { and product } 2 \\
& \text { are substitutes. }
\end{aligned}
$$

- We want to find the equilibrium prices P_{1} and P_{2} in this market.
- First, simplify the system (1)-(6) above. Because of equation (1), you can set the right hand sides of equations (2) and (3) equal to each other. You should obtain an equation with 2 variables: P_{1} and P_{2}. Simplify the equation by collecting terms and putting all the P_{1} and P_{2} terms on the left, and the constant on the right.

$$
\begin{aligned}
& 10-2 P_{1}+P_{2}=-2+3 P_{1} \\
& \Rightarrow-5 P_{1}+P_{2}=-12
\end{aligned}
$$

- Do the same with equations (4), (5) and (6):

$$
\begin{align*}
& 15+P_{1}-P_{2}=-1+2 P_{2} \\
& \Rightarrow \quad P_{1}-3 P_{2}=-16 \tag{B}
\end{align*}
$$

- Putting together the equations you found in (A) and (B), you should end up with the following system of equations:

$$
\begin{array}{r}
-5 P_{1}+P_{2}=-12 \\
P_{1}-3 P_{2}=-16 \tag{C}
\end{array}
$$

(Did you get the same equations? You may have the same equations, but multiplied by -1 , which is OK .)

- Rewrite the system (C) in matrix form $A X=B$:

$$
A=\left[\begin{array}{cc}
-5 & 1 \\
1 & -3
\end{array}\right] \quad X=\left[\begin{array}{c}
p_{1} \\
p_{2}
\end{array}\right] \quad B=\left[\begin{array}{c}
-12 \\
-16
\end{array}\right]
$$

- Now, use Cramer's rule to solve this system and find the equilibrium prices:

$$
\begin{aligned}
P_{1} & =\frac{\left|\begin{array}{cc}
-12 & 1 \\
-16 & -3
\end{array}\right|}{\left|\begin{array}{cc}
-5 & 1 \\
1 & -3
\end{array}\right|}=\frac{36+16}{15-1} \\
& P_{2}=\frac{\left|\begin{array}{cc}
-5 & -12 \\
1 & -16
\end{array}\right|}{\left|\begin{array}{cc}
-5 & 1 \\
1 & -3
\end{array}\right|}=\frac{80+12}{14} \\
=\frac{52}{14}=\frac{26}{7} & =\frac{92}{14}=\frac{46}{7}
\end{aligned}
$$

- You should find that the equilibrium prices are $P_{1}=\frac{26}{7}$ and $P_{2}=\frac{46}{7}$.

3 A model for national income

- Consider the following national income model:

$$
\begin{align*}
& Y=C+I_{0}+G_{0} \tag{7}\\
& C=a+b Y \quad(0<b<1) \tag{8}
\end{align*}
$$

where

$$
\begin{aligned}
Y & =\text { national income } \\
C & =\text { consumer expenditure } \\
I_{0} & =\text { business expenditure (i.e., investment) } \\
G_{0} & =\text { government expenditure }
\end{aligned}
$$

(We saw a more complicated version of this model back in Lesson 7.)

- Equation (7) says that national income equals total expenditure by consumers, business, and government.
- What does equation (8) say about the relationship between consumer expenditure and total national income?

Consumer expenditure depends directly on total national income: as $Y \uparrow$, then $C \uparrow$

- Now suppose that $I_{0}=8, G_{0}=5, a=4$, and $b=\frac{1}{3}$. Then equations (7) and (8) become

$$
\begin{align*}
& Y=C+13 \tag{9}\\
& C=4+\frac{1}{3} Y \tag{10}
\end{align*}
$$

- We want to solve for the national income Y and consumer expenditures C.
- First, simplify equations (9) and (10) by putting the Y and C terms on the left, and the constants on the right:

$$
\begin{align*}
Y-C & =13 \\
-\frac{1}{3} Y+C & =4 \tag{D}
\end{align*}
$$

- Rewrite the system of equations you wrote in (D) in matrix form $A X=B$:

$$
A=\left[\begin{array}{cc}
1 & -1 \\
-\frac{1}{3} & 1
\end{array}\right]
$$

$$
X=\left[\begin{array}{l}
Y \\
c
\end{array}\right] \quad B=\left[\begin{array}{c}
13 \\
4
\end{array}\right]
$$

- Now, use Cramer's rule to solve this system and find the national income and consumer expenditure:

$$
\begin{aligned}
Y & =\frac{\left|\begin{array}{cc}
13 & -1 \\
4 & 1
\end{array}\right|}{\left|\begin{array}{cc}
1 & -1 \\
-\frac{1}{3} & 1
\end{array}\right|}=\frac{13+4}{1-\frac{1}{3}} \quad C=\frac{\left|\begin{array}{cc}
1 & 13 \\
-\frac{1}{3} & 4
\end{array}\right|}{\left|\begin{array}{cc}
1 & -1 \\
-\frac{1}{3} & 1
\end{array}\right|}=\frac{4+\frac{13}{3}}{1-\frac{1}{3}} \\
& =\frac{17}{2 / 3}=\frac{51}{2}
\end{aligned}
$$

- You should find that the national income $Y=\frac{51}{2}$ and consumer expenditure $C=\frac{25}{2}$.

4 Exercises
Problem 1. Consider the three commodity market model given by

$$
\begin{aligned}
D_{1} & =S_{1} \\
D_{1} & =2-P_{1}+2 P_{2}+2 P_{3} \\
S_{1} & =-2+P_{1}
\end{aligned}
$$

$$
\begin{aligned}
D_{2} & =S_{2} \\
D_{2} & =5+2 P_{1}-P_{2}+2 P_{3} \\
S_{2} & =-1+P_{2}
\end{aligned}
$$

Using a similar method to the one outlined in Section 2 of this worksheet, simplify the above model into a system of 3 linear equations and 3 variables P_{1}, P_{2}, and P_{3}. Solve this system to find the equilibrium prices P_{1}, P_{2}, and P_{3} by forming the augmented matrix of the system and finding the RREF.

Problem 2. Suppose that in a national income model as in Section 3, we have $I_{0}=12, G_{0}=4, a=1, b=\frac{1}{4}$. Use Cramer's rule to find Y and C.

11 Setting $D_{1}=S_{1}$, etc.:

$$
\left.\begin{array}{l}
2-P_{1}+2 P_{2}+2 P_{3}=-2+P_{1} \\
5-2 P_{1}-P_{2}+2 P_{3}=-1+P_{2} \\
5-2 P_{1}+2 P_{2}-P_{3}=-3+P_{3}
\end{array}\right\} \Rightarrow \begin{aligned}
& -2 P_{1}+2 P_{2}+2 P_{3}=-4 \\
& -2 P_{1}-2 P_{2}+2 P_{3}=-6 \\
& -2 P_{1}+2 P_{2}-2 P_{3}=-8
\end{aligned}
$$

Augmented matrix:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
-2 & 2 & 2 & -4 \\
-2 & -2 & 2 & -6 \\
-2 & 2 & -2 & -8
\end{array}\right] \xrightarrow{-\frac{1}{2} R_{1}}\left[\begin{array}{cccc}
1 & -1 & -1 & 2 \\
-2 & -2 & 2 & -6 \\
-2 & 2 & -2 & -8
\end{array}\right] \xrightarrow{R_{2}+2 R_{1}+2 R_{1}}\left[\begin{array}{cccc}
1 & -1 & -1 & 2 \\
0 & -4 & 0 & -2 \\
0 & 0 & -4 & -4
\end{array}\right]} \\
& \xrightarrow{-\frac{1}{4} R_{2}}\left[\begin{array}{cccc}
1 & -1 & -1 & 2 \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & -4 & -4
\end{array}\right] \xrightarrow{-\frac{1}{4} R_{3}}\left[\begin{array}{cccc}
1 & -1 & -1 & 2 \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow{R_{1}+R_{2}}\left[\begin{array}{cccc}
1 & 0 & -1 & \frac{5}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 1
\end{array}\right] \\
& \xrightarrow{R_{1}+R_{3}}\left[\begin{array}{cccc}
1 & 0 & 0 & \frac{7}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \text { RREF }
\end{aligned}
$$

(2) $I_{0}=12, \quad G_{0}=4, \quad a=1, \quad b=\frac{1}{4}$

Model: $\quad Y=C+16 \quad \Rightarrow \quad Y-C=16$

$$
C=1+\frac{1}{4} Y \quad \Rightarrow \quad-\frac{1}{4} Y+C=1
$$

Using Cramer's rule:

$$
\begin{aligned}
& Y=\frac{\left|\begin{array}{cc}
16 & -1 \\
1 & 1
\end{array}\right|}{\left|\begin{array}{cc}
1 & -1 \\
-\frac{1}{4} & 1
\end{array}\right|}=\frac{16+1}{1-\frac{1}{4}}=\frac{17}{3 / 4}=\frac{68}{3} \\
& C=\frac{\left|\begin{array}{cc}
1 & 16 \\
-\frac{1}{4} & 1
\end{array}\right|}{\left|\begin{array}{cc}
1 & -1 \\
-\frac{1}{4} & 1
\end{array}\right|}=\frac{1+4}{1-\frac{1}{4}}=\frac{5}{3 / 4}=\frac{20}{3}
\end{aligned}
$$

